Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2016, Volume 59, Pages 192–200 (Mi cmfd293)  

Magnetic Schrödinger operator from the point of view of noncommutative geometry

A. G. Sergeev

Steklov Mathematical Institute, Moscow, Russia
References:
Abstract: We give an interpretation of magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of $C^*$-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.
English version:
Journal of Mathematical Sciences, 2018, Volume 293, Issue 6, Pages 949–957
DOI: https://doi.org/10.1007/s10958-018-3974-y
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: A. G. Sergeev, “Magnetic Schrödinger operator from the point of view of noncommutative geometry”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 192–200; Journal of Mathematical Sciences, 293:6 (2018), 949–957
Citation in format AMSBIB
\Bibitem{Ser16}
\by A.~G.~Sergeev
\paper Magnetic Schr\"odinger operator from the point of view of noncommutative geometry
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~2
\serial CMFD
\yr 2016
\vol 59
\pages 192--200
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3545772}
\transl
\jour Journal of Mathematical Sciences
\yr 2018
\vol 293
\issue 6
\pages 949--957
\crossref{https://doi.org/10.1007/s10958-018-3974-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051120265}
Linking options:
  • https://www.mathnet.ru/eng/cmfd293
  • https://www.mathnet.ru/eng/cmfd/v59/p192
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :89
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024