Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 1, Pages 121–149
DOI: https://doi.org/10.22363/2413-3639-2024-70-1-121-149
(Mi cmfd532)
 

On subordination conditions for systems of minimal differential operators

D. V. Limanskyiia, M. M. Malamudbc

a Donetsk State University, Donetsk, Russia
b RUDN University, Moscow, Russia
c Saint Petersburg State University, Saint Petersburg, Russia
References:
Abstract: In this paper, we provide a review of results on a priori estimates for systems of minimal differential operators in the scale of spaces $L^p(\Omega),$ where $p\in[1,\infty].$ We present results on the characterization of elliptic and $l$-quasielliptic systems using a priori estimates in isotropic and anisotropic Sobolev spaces $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty].$ For a given set $l=(l_1,\dots,l_n)\in\mathbb N^n$ we prove criteria for the existence of $l$-quasielliptic and weakly coercive systems and indicate wide classes of weakly coercive in $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty],$ nonelliptic, and nonquasielliptic systems. In addition, we describe linear spaces of operators that are subordinate in the $L^\infty(\mathbb R^n)$-norm to the tensor product of two elliptic differential polynomials.
Keywords: differential operator, a priori estimate, quasi-ellipticity, coercivity.
Funding agency Grant number
Russian Science Foundation 23-11-00153
Ministry of Science and Higher Education of the Russian Federation 124012400352-6
The study was conducted by the first author on the topic of the government assignment (reg. No. 124012400352-6). The second author’s research was supported by the grant No. 23-11-00153 of the Russian Science Foundation.
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: D. V. Limanskyii, M. M. Malamud, “On subordination conditions for systems of minimal differential operators”, Functional spaces. Differential operators. Problems of mathematics education, CMFD, 70, no. 1, PFUR, M., 2024, 121–149
Citation in format AMSBIB
\Bibitem{LymMal24}
\by D.~V.~Limanskyii, M.~M.~Malamud
\paper On subordination conditions for systems of minimal differential operators
\inbook Functional spaces. Differential operators. Problems of mathematics education
\serial CMFD
\yr 2024
\vol 70
\issue 1
\pages 121--149
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd532}
\crossref{https://doi.org/10.22363/2413-3639-2024-70-1-121-149}
\edn{https://elibrary.ru/YVHQAW}
Linking options:
  • https://www.mathnet.ru/eng/cmfd532
  • https://www.mathnet.ru/eng/cmfd/v70/i1/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :42
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025