Abstract:
The purpose of this paper is to generalize the macroscopic hydrodynamic vehicular traffic models by using the algorithm for constructing the adequate state equation — dependence the pressure from traffic density by taking into account the real experimental data (possibly using the parametric solutions for model equations). It is proved that this kind of state equation which closed model equations system and obtained from the experimentally observed form of the fundamental diagram — dependence the traffic intensity from its density, completely determines the all properties of the used phenomenological model.
Keywords:
vehicular traffic, the state equation, hyperbolic equation systems, traffic flows, phenomenological models.
Citation:
I. I. Morozov, A. V. Gasnikov, V. N. Tarasov, Ya. A. Kholodov, A. S. Kholodov, “Numerical study of traffic flows by the hydrodynamic models”, Computer Research and Modeling, 3:4 (2011), 389–412
\Bibitem{MorGasTar11}
\by I.~I.~Morozov, A.~V.~Gasnikov, V.~N.~Tarasov, Ya.~A.~Kholodov, A.~S.~Kholodov
\paper Numerical study of traffic flows by the hydrodynamic models
\jour Computer Research and Modeling
\yr 2011
\vol 3
\issue 4
\pages 389--412
\mathnet{http://mi.mathnet.ru/crm566}
\crossref{https://doi.org/10.20537/2076-7633-2011-3-4-389-412}
Linking options:
https://www.mathnet.ru/eng/crm566
https://www.mathnet.ru/eng/crm/v3/i4/p389
This publication is cited in the following 6 articles:
M. A. Trapeznikova, A. A. Chechina, N. G. Churbanova, “Simulation of Vehicular Traffic using Macro- and Microscopic Models”, CMIT, 7:2 (2023), 60
I. B. Petrov, “Grid-characteristic methods. 55 years of developing and solving complex dynamic problems”, CMIT, 6:1 (2023), 6
Aleksey Dmitrenko, Arina Karaseva, Dmitriy Osipov, A.D. Abramov, V. Murgul, “Regulation of traffic flows by railway stations with a change in the number of main tracks on the hauls”, MATEC Web Conf., 239 (2018), 02005
D. O. Volkov, S. N. Garichev, R. A. Gorbachev, N. N. Moroz, 2015 International Conference on Engineering and Telecommunication (EnT), 2015, 20
Ya. A. Kholodov, A. E. Alekseenko, M. O. Vasilev, A. S. Kholodov, “Postroenie matematicheskoi modeli dorozhnogo perekrestka na osnove gidrodinamicheskogo podkhoda”, Kompyuternye issledovaniya i modelirovanie, 6:4 (2014), 503–522
Yu. L. Slovokhotov, “Fizika i sotsiofizika. Ch. 3. Kvazifizicheskoe modelirovanie v sotsiologii i politologii. Nekotorye modeli lingvistiki, demografii, matematicheskoi istorii”, Probl. upravl., 3 (2012), 2–34