Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 1, Pages 56–73
DOI: https://doi.org/10.33048/daio.2022.29.727
(Mi da1293)
 

On complexity of searching for periods of functions given by polynomials over a prime field

S. N. Selezneva

Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
References:
Abstract: \hspace{-1pt}We consider polynomials over the prime field $F_p = (E_p; +, \cdot)$ of $p$ elements. With each polynomial $f(x_1, \ldots, x_n)$ under consideration, we associate a $p$-valued function $f\colon E_p^n \to E_p$ that the polynomial defines. A period of a $p$-valued function $f(x_1, \ldots, x_n)$ is a tuple $a = (a_1, \ldots, a_n)$ of elements from $E_p$ such that $f(x_1+a_1, \ldots, x_n+a_n) = f(x_1, \ldots, x_n).$ In the paper, we propose an algorithm that, for $p$ prime and an arbitrary $p$-valued function $f(x_1, \ldots, x_n)$ given by a polynomial over the field $F_p,$ finds a basis of the linear space of all periods of $f.$ Moreover, the complexity of the algorithm is equal to $n^{O(d)},$ where $d$ is the degree of the polynomial that defines $f.$ As a consequence, we show that for $p$ prime and each fixed number $d$ the problem of searching for a basis of the linear space of all periods of a function $f$ given by a polynomial of the degree at most $d$ can be solved by a polynomial-time algorithm with respect to the number of variables of the function. Bibliogr. 11.
Keywords: $p$-valued function (function of $p$-valued logic), finite field, prime field, polynomial over a field, periodicity, algorithm, complexity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00200_а
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1621
This research is supported by Russian Foundation for Basic Research (Project 19–01–00200–a) and by Ministry of Education and Science of Russian Federation as a part of the program of Moscow Center for Fundamental and Applied Mathematics (Project 075–15–2019–1621).
Received: 14.11.2021
Revised: 14.11.2021
Accepted: 26.11.2021
Bibliographic databases:
Document Type: Article
UDC: 519.712.3+512.622+510.52
Language: Russian
Citation: S. N. Selezneva, “On complexity of searching for periods of functions given by polynomials over a prime field”, Diskretn. Anal. Issled. Oper., 29:1 (2022), 56–73
Citation in format AMSBIB
\Bibitem{Sel22}
\by S.~N.~Selezneva
\paper On complexity of searching for periods of~functions given by polynomials over~a~prime~field
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 1
\pages 56--73
\mathnet{http://mi.mathnet.ru/da1293}
\crossref{https://doi.org/10.33048/daio.2022.29.727}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4419175}
Linking options:
  • https://www.mathnet.ru/eng/da1293
  • https://www.mathnet.ru/eng/da/v29/i1/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :25
    References:42
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024