|
Дискретный анализ и исследование операций, 2008, том 15, выпуск 6, страницы 3–10
(Mi da552)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Критерий граничности и его применения
В. Е. Алексеев, Д. С. Малышев Нижегородский государственный университет им. Н. И. Лобачевского
Аннотация:
Даётся новое определение граничного класса графов и доказывается критерий граничности. В качестве примера его применения рассматривается класс, состоящий из графов, у которых каждая компонента связности является деревом с не более чем тремя листьями. Известен ряд задач, для которых этот класс является граничным. Получены достаточные условия его граничности и доказано, что он является граничным для задач о наибольшем двудольном подграфе и наибольшем планарном подграфе. Библиогр. 8.
Ключевые слова:
вычислительная сложность, граничный класс, задача о наибольшем подграфе.
Статья поступила: 16.06.2008 Переработанный вариант: 01.10.2008
Образец цитирования:
В. Е. Алексеев, Д. С. Малышев, “Критерий граничности и его применения”, Дискретн. анализ и исслед. опер., 15:6 (2008), 3–10
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/da552 https://www.mathnet.ru/rus/da/v15/i6/p3
|
Статистика просмотров: |
Страница аннотации: | 539 | PDF полного текста: | 103 | Список литературы: | 56 | Первая страница: | 12 |
|