Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2017, Volume 24, Issue 2, Pages 68–86
DOI: https://doi.org/10.17377/daio.2017.24.534
(Mi da870)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic approximation for the number of graphs

T. I. Fedoryaevaab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Full-text PDF (363 kB) Citations (3)
References:
Abstract: We prove that, for fixed $k\geq3$, the following classes of labeled $n$-vertex graphs are asymptotically equicardinal: graphs of diameter $k$, connected graphs of diameter at least $k$, and (not necessarily connected) graphs with a shortest path of length at least $k$. An asymptotically exact approximation of the number of such $n$-vertex graphs is obtained, and an explicit error estimate in the approximation is found. Thus, the estimates are improved for the asymptotic approximation of the number of $n$-vertex graphs of fixed diameter $k$ earlier obtained by Füredi and Kim. It is shown that almost all graphs of diameter $k$ have a unique pair of diametrical vertices but almost all graphs of diameter 2 have more than one pair of such vertices. Illustr. 3, bibliogr. 9.
Keywords: graph, labeled graph, shortest path, graph diameter, number of graphs, ordinary graph.
Received: 29.03.2016
Revised: 04.07.2016
English version:
Journal of Applied and Industrial Mathematics, 2017, Volume 11, Issue 2, Pages 204–214
DOI: https://doi.org/10.1134/S1990478917020065
Bibliographic databases:
Document Type: Article
UDC: 519.1+519.175
Language: Russian
Citation: T. I. Fedoryaeva, “Asymptotic approximation for the number of graphs”, Diskretn. Anal. Issled. Oper., 24:2 (2017), 68–86; J. Appl. Industr. Math., 11:2 (2017), 204–214
Citation in format AMSBIB
\Bibitem{Fed17}
\by T.~I.~Fedoryaeva
\paper Asymptotic approximation for the number of graphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2017
\vol 24
\issue 2
\pages 68--86
\mathnet{http://mi.mathnet.ru/da870}
\crossref{https://doi.org/10.17377/daio.2017.24.534}
\elib{https://elibrary.ru/item.asp?id=29275515}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 2
\pages 204--214
\crossref{https://doi.org/10.1134/S1990478917020065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019662822}
Linking options:
  • https://www.mathnet.ru/eng/da870
  • https://www.mathnet.ru/eng/da/v24/i2/p68
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :156
    References:57
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025