Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1986, Volume 289, Number 4, Pages 836–839 (Mi dan8492)  

This article is cited in 1 scientific paper (total in 2 paper)

MATHEMATICAL PHYSICS

Asymptotic solution of a problem on the point source of diffusion in a moving medium when the diffusion coefficients are small

V. M. Babich

Leningrad Department of V. A. Steklov Institute of Mathematics, USSR Academy of Sciences
Full-text PDF (441 kB) Citations (2)
Presented: L. D. Faddeev
Received: 23.07.1985
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. M. Babich, “Asymptotic solution of a problem on the point source of diffusion in a moving medium when the diffusion coefficients are small”, Dokl. Akad. Nauk SSSR, 289:4 (1986), 836–839
Citation in format AMSBIB
\Bibitem{Bab86}
\by V.~M.~Babich
\paper Asymptotic solution of a problem on the point source of diffusion
in a moving medium when the diffusion coefficients are small
\jour Dokl. Akad. Nauk SSSR
\yr 1986
\vol 289
\issue 4
\pages 836--839
\mathnet{http://mi.mathnet.ru/dan8492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=856655}
\zmath{https://zbmath.org/?q=an:0625.35037}
Linking options:
  • https://www.mathnet.ru/eng/dan8492
  • https://www.mathnet.ru/eng/dan/v289/i4/p836
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024