|
МАТЕМАТИКА
Сходимость вероятностей истинности предложений первого порядка для рекурсивных моделей случайного графа
М. Е. Жуковскийabc, Ю. А. Малышкинad a Московский физико-технический институт (национальный исследовательский университет), Московская область, Долгопрудный, Россия
b Адыгейский государственный университет, Кавказский математический центр, Майкоп, Республика Адыгея, Россия
c Российская академия народного хозяйства и государственной службы при Президенте Российской Федерaции, Москва, Россия
d Тверской государственный университет, Тверь, Россия
Аннотация:
Исследована справедливость закона нуля или единицы и закона сходимости для логики первого порядка двух рекурсивных моделей случайного графа – равномерной модели, в которой на каждом шаге добавляется вершина с $m$ равномерно распределенными ребрами, и модели предпочтительного присоединения, в которой также проводятся $m$ ребер, но вероятности не одинаковы, а пропорциональны степеням вершин, к которым эти ребра проводятся.
Ключевые слова:
рекурсивные случайные графы, предпочтительное присоединение, логика первого порядка, законы нуля или единицы.
Образец цитирования:
М. Е. Жуковский, Ю. А. Малышкин, “Сходимость вероятностей истинности предложений первого порядка для рекурсивных моделей случайного графа”, Докл. РАН. Матем., информ., проц. упр., 494 (2020), 35–37; Dokl. Math., 102:2 (2020), 384–386
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/danma113 https://www.mathnet.ru/rus/danma/v494/p35
|
Статистика просмотров: |
Страница аннотации: | 78 | PDF полного текста: | 31 | Список литературы: | 17 |
|