Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 501, Pages 84–88
DOI: https://doi.org/10.31857/S2686954321060175
(Mi danma17)
 

MATHEMATICS

Quotients of Severi–Brauer surfaces

A. S. Trepalinab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: We show that a quotient of a non-trivial Severi–Brauer surface $S$ over arbitrary field $\mathbb k$ of characteristic 0 by a finite group $G\subset\operatorname{Aut}(S)$ is $\mathbb k$-rational if and only if $|G|$ is divisible by 3. Otherwise, the quotient is birationally equivalent to $S$.
Keywords: Severi–Brauer surfaces, rationality problems, Brauer group, minimal model program.
Funding agency Grant number
HSE Academic Fund Programme
The study has been funded within the framework of the HSE University Basic Research Program.
Presented: A. N. Parshin
Received: 05.08.2021
Revised: 26.10.2021
Accepted: 27.10.2021
Bibliographic databases:
Document Type: Article
UDC: 512.774.4
Language: Russian
Citation: A. S. Trepalin, “Quotients of Severi–Brauer surfaces”, Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 84–88
Citation in format AMSBIB
\Bibitem{Tre21}
\by A.~S.~Trepalin
\paper Quotients of Severi--Brauer surfaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 501
\pages 84--88
\mathnet{http://mi.mathnet.ru/danma17}
\crossref{https://doi.org/10.31857/S2686954321060175}
\zmath{https://zbmath.org/?q=an:7503285}
\elib{https://elibrary.ru/item.asp?id=47371424}
Linking options:
  • https://www.mathnet.ru/eng/danma17
  • https://www.mathnet.ru/eng/danma/v501/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :22
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024