Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 85–88
DOI: https://doi.org/10.31857/S268695432003008X
(Mi danma78)
 

This article is cited in 1 scientific paper (total in 1 paper)

INFORMATICS

Accelerated gradient sliding for minimizing a sum of functions

D. M. Dvinskikha, S. S. Omelchenkob, A. V. Gasnikova, A. I. Turinc

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russian Federation
c National Research University "Higher School of Economics", Moscow, Russian Federation
Full-text PDF (129 kB) Citations (1)
References:
Abstract: We propose a new way of justifying the accelerated gradient sliding of G. Lan, which allows one to extend the sliding technique to a combination of an accelerated gradient method with an accelerated variance reduction method. New optimal estimates for the solution of the problem of minimizing a sum of smooth strongly convex functions with a smooth regularizer are obtained.
Keywords: accelerated gradient sliding of G. Lan, accelerated variance reduction methods, smooth strongly convex functions.
Funding agency Grant number
Russian Foundation for Basic Research 18–31–20005 мол_а_вед
19–31–90062 Аспиранты
Ministry of Education and Science of the Russian Federation 075-00337-20-03
This work was supported by the Russian Foundation for Basic Research, project no. 18-31-20005 mol_a_ved (Section 1) and project no. 19-31-90062 Graduate students (Section 2). Dvinskikh acknowledges the support of the Ministry of Science and Higher Education of the Russian Federation, state assignment no. 075-00337-20-03.
Presented: Yu. G. Evtushenko
Received: 20.03.2020
Revised: 26.03.2020
Accepted: 03.04.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 244–246
DOI: https://doi.org/10.1134/S1064562420030084
Bibliographic databases:
Document Type: Article
UDC: 519.853.62
Language: Russian
Citation: D. M. Dvinskikh, S. S. Omelchenko, A. V. Gasnikov, A. I. Turin, “Accelerated gradient sliding for minimizing a sum of functions”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 85–88; Dokl. Math., 101:3 (2020), 244–246
Citation in format AMSBIB
\Bibitem{DviOmeGas20}
\by D.~M.~Dvinskikh, S.~S.~Omelchenko, A.~V.~Gasnikov, A.~I.~Turin
\paper Accelerated gradient sliding for minimizing a sum of functions
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 85--88
\mathnet{http://mi.mathnet.ru/danma78}
\crossref{https://doi.org/10.31857/S268695432003008X}
\zmath{https://zbmath.org/?q=an:1480.90193}
\elib{https://elibrary.ru/item.asp?id=42930025}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 244--246
\crossref{https://doi.org/10.1134/S1064562420030084}
Linking options:
  • https://www.mathnet.ru/eng/danma78
  • https://www.mathnet.ru/eng/danma/v492/p85
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :41
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024