Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2019, Issue 11, Pages 1–10
DOI: https://doi.org/10.31029/demr.11.1
(Mi demr67)
 

Analogs of the Liouville property for Bessel function series

N. P. Volchkovaa, Vit. V. Volchkovb

a Donetsk National Technical University
b Donetsk National University
References:
Abstract: We study functions given in the form of a series in Bessel's functions of the first kind. The admissible asymptotic behavior of such functions at infinity is founded. As a consequence we obtain an analog of Liouville's theorem for the Fourier-Bessel and Dini developments.
Keywords: cylindrical functions, Liouville property, asymptotic behavior.
Received: 19.12.2018
Revised: 15.05.2019
Accepted: 16.05.2019
Document Type: Article
UDC: 517.444
Language: Russian
Citation: N. P. Volchkova, Vit. V. Volchkov, “Analogs of the Liouville property for Bessel function series”, Daghestan Electronic Mathematical Reports, 2019, no. 11, 1–10
Citation in format AMSBIB
\Bibitem{VolVol19}
\by N.~P.~Volchkova, Vit.~V.~Volchkov
\paper Analogs of the Liouville property for Bessel function series
\jour Daghestan Electronic Mathematical Reports
\yr 2019
\issue 11
\pages 1--10
\mathnet{http://mi.mathnet.ru/demr67}
\crossref{https://doi.org/10.31029/demr.11.1}
Linking options:
  • https://www.mathnet.ru/eng/demr67
  • https://www.mathnet.ru/eng/demr/y2019/i11/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :45
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025