Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 1, Pages 3–6
DOI: https://doi.org/10.4213/dm322
(Mi dm322)
 

This article is cited in 3 scientific papers (total in 3 papers)

Minimal points of a supercritical branching random walk on the lattice $\mathbf N_0^r$, and multitype Galton–Watson branching processes

B. A. Sevast'yanov
Full-text PDF (364 kB) Citations (3)
References:
Abstract: We consider a supercritical Galton–Watson branching process with mean value of offspring of one particle equal to $A>1$. The initial particle is placed at the point $\boldsymbol0\in N_0^r$, where $N_0=\{0,1,2,\dots\}$. If a particle is at a point $\mathbf z\in N_0^r$, then its direct descendants are placed at points $\mathbf z+\mathbf x\in N_0^r$ with probabilities
$$ p(\mathbf x),\qquad \sum_{\mathbf x\in N_0^r}p(\mathbf x)=1, $$
independently of each other. We suppose that $Ap(\boldsymbol0)>1$. Let $\mu_t(\mathbf x)$ be that number of particles of the $t$th generation at the point $\mathbf x\in N_0^r$. The random set $S\subseteq N_0^r$ is defined in the following way: $\mathbf x\in S$ if and only if $\lim_{t\to\infty}\mu_t(\mathbf x)=\infty$. A point $\mathbf z\in S$ is called minimal if $\mathbf x\notin S$ for all $\mathbf x\le\mathbf z$, $\mathbf x\ne\mathbf z$, We denote by $S_0$ the set of minimal points. We show how to calculate the probabilities $\mathsf P\{\mathbf z\in S_0\}$, $\mathsf P\{\mathbf z_1\in S_0,\mathbf z_2\in S_0\}$, and the like by using some auxiliary branching processes with finite number of types.
The research was supported by the Russian Foundation for Basic Research, grants 99–0100012, 96–15–96092, and INTAS–RFBR, grant 95–0099.
Received: 04.12.1999
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. A. Sevast'yanov, “Minimal points of a supercritical branching random walk on the lattice $\mathbf N_0^r$, and multitype Galton–Watson branching processes”, Diskr. Mat., 12:1 (2000), 3–6; Discrete Math. Appl., 10:1 (2000), 1–4
Citation in format AMSBIB
\Bibitem{Sev00}
\by B.~A.~Sevast'yanov
\paper Minimal points of a supercritical branching random walk on the lattice $\mathbf N_0^r$, and multitype Galton--Watson branching processes
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 1
\pages 3--6
\mathnet{http://mi.mathnet.ru/dm322}
\crossref{https://doi.org/10.4213/dm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1778762}
\zmath{https://zbmath.org/?q=an:0976.60078}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 1
\pages 1--4
Linking options:
  • https://www.mathnet.ru/eng/dm322
  • https://doi.org/10.4213/dm322
  • https://www.mathnet.ru/eng/dm/v12/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :224
    References:107
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025