Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1993, Volume 5, Issue 3, Pages 40–43 (Mi dm689)  

This article is cited in 3 scientific papers (total in 3 papers)

On the number of threshold functions

A. A. Irmatov
Full-text PDF (443 kB) Citations (3)
Abstract: A Boolean function is called a threshold function if its truth domain is a part of the $n$-cube cut off by some hyperplane. The number of threshold functions of $n$ variables $P(2,n)$ was estimated in [1, 2, 3]. Obtaining the lower bounds is a problem of special difficulty. Using a result of [4], Yu. A. Zuev showed [3] that for sufficiently large $n$
$$ P(2,n)>2^{n^2(1-10/\ln n)}. $$
In the present paper a new proof which gives a more precise lower bound of $P(2,n)$ is proposed, namely, it is proved that for sufficiently large $n$
$$ P(2,n)>2^{n^2(1-7/\ln n)}P\biggl(2,\biggl[\frac{7(n-1)\ln 2}{\ln(n-1)}\biggr]\biggr). $$
Received: 02.07.1992
Bibliographic databases:
Language: Russian
Citation: A. A. Irmatov, “On the number of threshold functions”, Diskr. Mat., 5:3 (1993), 40–43; Discrete Math. Appl., 3:4 (1993), 429–432
Citation in format AMSBIB
\Bibitem{Irm93}
\by A.~A.~Irmatov
\paper On the number of threshold functions
\jour Diskr. Mat.
\yr 1993
\vol 5
\issue 3
\pages 40--43
\mathnet{http://mi.mathnet.ru/dm689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1266256}
\zmath{https://zbmath.org/?q=an:0796.94016}
\transl
\jour Discrete Math. Appl.
\yr 1993
\vol 3
\issue 4
\pages 429--432
Linking options:
  • https://www.mathnet.ru/eng/dm689
  • https://www.mathnet.ru/eng/dm/v5/i3/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:668
    Full-text PDF :240
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024