Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2021, Volume 21, Number 1, Pages 71–88
DOI: https://doi.org/10.47910/FEMJ202107
(Mi dvmg448)
 

This article is cited in 2 scientific papers (total in 2 papers)

The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$

E. N. Lomakinaa, M. G. Nasyrovaa, V. V. Nasyrovb

a Computer Centre of Far Eastern Branch RAS, Khabarovsk
b Pacific National University, Khabarovsk
Full-text PDF (656 kB) Citations (2)
References:
Abstract: In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1<\max (r,s)\le \min(p,q)<\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0<\alpha<\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
Key words: Hardy operator, compact operator, Lorentz spaces, approximation numbers, entropy numbers.
Received: 10.03.2021
Document Type: Article
UDC: 517.51
MSC: Primary 46E30; Secondary 47B38
Language: Russian
Citation: E. N. Lomakina, M. G. Nasyrova, V. V. Nasyrov, “The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$”, Dal'nevost. Mat. Zh., 21:1 (2021), 71–88
Citation in format AMSBIB
\Bibitem{LomNasNas21}
\by E.~N.~Lomakina, M.~G.~Nasyrova, V.~V.~Nasyrov
\paper The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
\jour Dal'nevost. Mat. Zh.
\yr 2021
\vol 21
\issue 1
\pages 71--88
\mathnet{http://mi.mathnet.ru/dvmg448}
\crossref{https://doi.org/10.47910/FEMJ202107}
Linking options:
  • https://www.mathnet.ru/eng/dvmg448
  • https://www.mathnet.ru/eng/dvmg/v21/i1/p71
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :49
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024