|
On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem
V. P. Tananaab, A. I. Sidikovaa a South Ural State University (national research university), 454080 Chelyabinsk
b Chelyabinsk State University
Аннотация:
The paper suggests a solution to a combined initial boundary value problem for the heat equation, in which, the heating takes place in the interval from $0$ to $T$, and then, starting with $T$, the free heat exchange with the surrounding medium occurs. Such a statement is an adequate mathematical model describing the temperature field of a heated object. The error estimation of the approximate solution to the problem is obtained in terms of the modulus of continuity of the inverse operator.
Ключевые слова:
error estimation, modulus of continuity, Fourier transform, ill-posed problem.
Образец цитирования:
V. P. Tanana, A. I. Sidikova, “On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem”, Eurasian Journal of Mathematical and Computer Applications, 6:3 (2018), 53–74
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ejmca115 https://www.mathnet.ru/rus/ejmca/v6/i3/p53
|
Статистика просмотров: |
Страница аннотации: | 125 | PDF полного текста: | 53 | Список литературы: | 1 |
|