Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 3, Pages 52–62
DOI: https://doi.org/10.4213/faa3150
(Mi faa3150)
 

This article is cited in 14 scientific papers (total in 14 papers)

“Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom

B. I. Suleimanov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
References:
Abstract: We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian $ H_1 (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painlevé I hierarchy. This solution is obtained by an explicit change of variables from a solution of systems of linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analogue of the Schrödinger equation corresponding to the Hamiltonian $ H_2 (z, t, q_1, q_2, p_1, p_2) $ of a Hamiltonian system with respect to $t$ compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painlevé II hierarchy.
Keywords: quantization, Schrödinger equation, Hamiltonian, Painlevé equations, isomonodromic deformations, integrability.
Funding agency Grant number
Russian Science Foundation 14-11-00078
Received: 18.04.2012
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 3, Pages 198–207
DOI: https://doi.org/10.1007/s10688-014-0061-0
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funktsional. Anal. i Prilozhen., 48:3 (2014), 52–62; Funct. Anal. Appl., 48:3 (2014), 198–207
Citation in format AMSBIB
\Bibitem{Sul14}
\by B.~I.~Suleimanov
\paper ``Quantizations'' of Higher Hamiltonian Analogues of the Painlev\'e I and Painlev\'e II Equations with Two Degrees of Freedom
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 3
\pages 52--62
\mathnet{http://mi.mathnet.ru/faa3150}
\crossref{https://doi.org/10.4213/faa3150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3494720}
\zmath{https://zbmath.org/?q=an:06410500}
\elib{https://elibrary.ru/item.asp?id=22834188}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 3
\pages 198--207
\crossref{https://doi.org/10.1007/s10688-014-0061-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342060400005}
\elib{https://elibrary.ru/item.asp?id=23994872}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908079621}
Linking options:
  • https://www.mathnet.ru/eng/faa3150
  • https://doi.org/10.4213/faa3150
  • https://www.mathnet.ru/eng/faa/v48/i3/p52
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:760
    Full-text PDF :267
    References:109
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024