Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 3, Pages 84–88
DOI: https://doi.org/10.4213/faa3151
(Mi faa3151)
 

This article is cited in 7 scientific papers (total in 7 papers)

Brief communications

Curves on the Oeljeklaus–Toma Manifolds

S. Viarbitskaya

M. V. Lomonosov Moscow State University
Full-text PDF (160 kB) Citations (7)
References:
Abstract: The Oeljeklaus–Toma manifolds are complex non-Kähler manifolds constructed by Oeljeklaus and Toma from certain number fields and generalizing the Inoue surfaces SmSm. We prove that the Oeljeklaus–Toma manifolds contain no compact complex curves.
Keywords: non-Kähler manifold, complex manifold, Oeljeklaus–Toma manifold, Inoue surface, surface of class VII, Dirichlet unit theorem.
Received: 16.05.2012
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 3, Pages 223–226
DOI: https://doi.org/10.1007/s10688-014-0063-y
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: S. Viarbitskaya, “Curves on the Oeljeklaus–Toma Manifolds”, Funktsional. Anal. i Prilozhen., 48:3 (2014), 84–88; Funct. Anal. Appl., 48:3 (2014), 223–226
Citation in format AMSBIB
\Bibitem{Ver14}
\by S.~Viarbitskaya
\paper Curves on the Oeljeklaus--Toma Manifolds
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 3
\pages 84--88
\mathnet{http://mi.mathnet.ru/faa3151}
\crossref{https://doi.org/10.4213/faa3151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3494722}
\zmath{https://zbmath.org/?q=an:06410502}
\elib{https://elibrary.ru/item.asp?id=22834198}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 3
\pages 223--226
\crossref{https://doi.org/10.1007/s10688-014-0063-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000342060400007}
\elib{https://elibrary.ru/item.asp?id=23994811}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908071276}
Linking options:
  • https://www.mathnet.ru/eng/faa3151
  • https://doi.org/10.4213/faa3151
  • https://www.mathnet.ru/eng/faa/v48/i3/p84
  • This publication is cited in the following 7 articles:
    1. Shuang Liang, Xi Sisi Shen, Kevin Smith, “The continuity equation for Hermitian metrics: Calabi estimates, Chern scalar curvature, and Oeljeklaus–Toma manifolds”, Bulletin of London Math Soc, 56:3 (2024), 959  crossref
    2. Indranil Biswas, Sorin Dumitrescu, “Holomorphic geometric structures on Oeljeklaus–Toma manifolds”, manuscripta math., 2024  crossref
    3. Daniele Angella, Maurizio Parton, Victor Vuletescu, “Rigidity of Oeljeklaus–Toma manifolds”, Annales de l'Institut Fourier, 70:6 (2021), 2409  crossref
    4. Aprodu M., Vuletescu V., “Indecomposable Filtrable Vector Bundles on Oeljeklaus-Toma Manifolds”, Rev. Roum. Math. Pures Appl., 65:3, SI (2020), 227–234  mathscinet  isi
    5. Ornea L., Verbitsky M., “Hopf Surfaces in Locally Conformally Kahler Manifolds With Potential”, Geod. Dedic., 207:1 (2020), 219–226  crossref  mathscinet  zmath  isi  scopus
    6. L. Ornea, M. Verbitsky, V. Vuletescu, “Flat affine subvarieties in Oeljeklaus-Toma manifolds”, Math. Z., 292:3-4 (2019), 839–847  crossref  mathscinet  zmath  isi
    7. Panov T., Ustinovskiy Yu., Verbitsky M., “Complex geometry of moment-angle manifolds”, Math. Z., 284:1-2 (2016), 309–333  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :212
    References:73
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025