|
Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 6, Pages 217–226
(Mi fpm1093)
|
|
|
|
The Chekhov–Fock parametrization of Teichmüller spaces and dessins d'enfants
G. B. Shabata, V. I. Zolotarskayab a Russian State University for the Humanities
b Deloitte
Abstract:
The construction of Chekhov and Fock, which associates a complex structure to a trivalent ribbon graph with real numbers on its edges, is reformulated in cartographic terms. It turns out that the “dessins d'enfants” construction
corresponds to zero numbers. Two examples are discussed, and the future development of the theory is suggested.
Citation:
G. B. Shabat, V. I. Zolotarskaya, “The Chekhov–Fock parametrization of Teichmüller spaces and dessins d'enfants”, Fundam. Prikl. Mat., 13:6 (2007), 217–226; J. Math. Sci., 158:1 (2009), 155–161
Linking options:
https://www.mathnet.ru/eng/fpm1093 https://www.mathnet.ru/eng/fpm/v13/i6/p217
|
Statistics & downloads: |
Abstract page: | 638 | Full-text PDF : | 280 | References: | 83 | First page: | 1 |
|