Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2014, Volume 19, Issue 4, Pages 101–120 (Mi fpm1599)  

On integral representation of $\Gamma$-limit functionals

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State University
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: We consider the $\Gamma$-convergence of a sequence of integral functionals $F_n(u)$, defined on the functions $u$ from the Sobolev space $W^{1,\alpha}(\Omega)$ ($\alpha>1$), $\Omega$ is a bounded Lipschitz domain, where the integrand $f_n(x,u,\nabla u)$ depends on a function $u$ and its gradient $\nabla u$. As functions of $\xi$, the integrands $f_n(x,s,\xi)$ are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents $\alpha<\beta$. Besides, the integrands $f_n(x,s,\xi)$ are equi-continuous over $s$ in some sense with respect to $n$. We prove that for the functions from $L^\infty(\Omega)\cap W^{1,\beta}(\Omega)$ the $\Gamma$-limit functional coincides with an integral functional $F(u)$ for which the integrand $f(x,s,\xi)$ is of the same class as $f_n(x,s,\xi)$.
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 217, Issue 6, Pages 736–750
DOI: https://doi.org/10.1007/s10958-016-3002-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
Language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “On integral representation of $\Gamma$-limit functionals”, Fundam. Prikl. Mat., 19:4 (2014), 101–120; J. Math. Sci., 217:6 (2016), 736–750
Citation in format AMSBIB
\Bibitem{ZhiPas14}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper On integral representation of $\Gamma$-limit functionals
\jour Fundam. Prikl. Mat.
\yr 2014
\vol 19
\issue 4
\pages 101--120
\mathnet{http://mi.mathnet.ru/fpm1599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3431886}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 217
\issue 6
\pages 736--750
\crossref{https://doi.org/10.1007/s10958-016-3002-z}
Linking options:
  • https://www.mathnet.ru/eng/fpm1599
  • https://www.mathnet.ru/eng/fpm/v19/i4/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :189
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025