Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2007, Volume 13, Issue 2, Pages 3–29 (Mi fpm16)  

This article is cited in 2 scientific papers (total in 2 papers)

The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity

A. Ya. Belovab

a Moscow Institute of Open Education
b Hebrew University of Jerusalem
Full-text PDF (265 kB) Citations (2)
References:
Abstract: The paper is devoted to relations between the Kurosh problem and the Shirshov height theorem. The central point and main technical tool is the identity of algebraicity. The main result of this paper is the following. Let $A$ be a finitely generated PI-algebra and $Y$ be a finite subset of $A$. For any Noetherian associative and commutative ring $R\supset\mathbb F$, let any factor of $R\otimes A$ such that all projections of elements from $Y$ are algebraic over $\pi(R)$ be a Noetherian $R$-module. Then $A$ has bounded essential height over $Y$. If, furthermore, $Y$ generates $A$ as an algebra, then $A$ has bounded height over $Y$ in the Shirshov sense.
The paper also contains a new proof of the Razmyslov–Kemer–Braun theorem on radical nilpotence of affine PI-algebras. This proof allows one to obtain some constructive estimates.
The main goal of the paper is to develope a “virtual operator calculus.” Virtual operators (pasting, deleting and transfer) depend not only on an element of the algebra but also on its representation.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 154, Issue 2, Pages 125–142
DOI: https://doi.org/10.1007/s10958-008-9156-6
Bibliographic databases:
UDC: 512.552.4+512.554.32+512.664.2
Language: Russian
Citation: A. Ya. Belov, “The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity”, Fundam. Prikl. Mat., 13:2 (2007), 3–29; J. Math. Sci., 154:2 (2008), 125–142
Citation in format AMSBIB
\Bibitem{Bel07}
\by A.~Ya.~Belov
\paper The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 2
\pages 3--29
\mathnet{http://mi.mathnet.ru/fpm16}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2322971}
\zmath{https://zbmath.org/?q=an:1175.16015}
\elib{https://elibrary.ru/item.asp?id=11162639}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 154
\issue 2
\pages 125--142
\crossref{https://doi.org/10.1007/s10958-008-9156-6}
\elib{https://elibrary.ru/item.asp?id=13572350}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249097337}
Linking options:
  • https://www.mathnet.ru/eng/fpm16
  • https://www.mathnet.ru/eng/fpm/v13/i2/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:611
    Full-text PDF :199
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025