Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 1, Pages 47–66 (Mi fpm365)  

This article is cited in 36 scientific papers (total in 36 papers)

On non-Spechtian varieties

A. Ya. Belov

House of scientific and technical work of youth
Abstract: This article is devoted to construction of infinitely based series of identities. Such counterexamples in Specht problem are built in any positive characteristics. The main result is the following:
Theorem. Let $F$ be any field of characteristic $p$, $q=p^s$, $s>1$. Then the polynomials $R_n$:
$$ R_n=[[E,T],T]\prod_{i=1}^n Q(x_i,y_i) ([T,[T,F]][[E,T],T])^{q-1}[T,[T,F]], $$
where $Q(x,y)=x^{p-1}y^{p-1}[x,y]$, generate an infinitely based variety.
Received: 01.11.1998
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. Ya. Belov, “On non-Spechtian varieties”, Fundam. Prikl. Mat., 5:1 (1999), 47–66
Citation in format AMSBIB
\Bibitem{Bel99}
\by A.~Ya.~Belov
\paper On non-Spechtian varieties
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 1
\pages 47--66
\mathnet{http://mi.mathnet.ru/fpm365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1799544}
\zmath{https://zbmath.org/?q=an:0964.16024}
Linking options:
  • https://www.mathnet.ru/eng/fpm365
  • https://www.mathnet.ru/eng/fpm/v5/i1/p47
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:626
    Full-text PDF :189
    References:1
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025