Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2001, Volume 7, Issue 2, Pages 387–421 (Mi fpm580)  

This article is cited in 7 scientific papers (total in 7 papers)

The Procesi–Razmyslov theorem for quiver representations

A. N. Zubkov

Omsk State Pedagogical University
Abstract: We find the generators and the defining relations of any quiver representation invariant algebra. To be precise, let $R(Q,\bar k)$ be a quiver representation space with respect to the natural action of the group consisting of all isomorphisms of the quiver representations. Denote this group by $\operatorname{GL}(\bar k)$, where $\bar k$ is a dimensional vector of the quiver representation space $R(Q,\bar k)$. For example, when our quiver $Q$ has only one vertex and several loops are incidental to this vertex we have the well-known case of the adjoint action of the general linear group on the space of several $n\times n$-matrices. In the characteristic zero case Artin and Procesi described the quotient of the last variety under this action in their classic works. In the case of arbitrary infinite ground field this result can be deduced from some results by Procesi and Donkin. In a similar manner we can define the quotient of the quiver representation space $R(Q,\bar k)$ by the action of the group $\operatorname{GL}(\bar k)$. By the definition we have that $K[R(Q,\bar k)/\operatorname{GL}(\bar k)]\cong K[R(Q,\bar k)]^{\operatorname{GL}(\bar k)}$. Donkin has recently found the generators of that algebra. In this article we define a free quiver representation invariant algebra. Then we prove that the kernel of its canonical epimorphism onto $K[R(Q,\bar k)]^{\operatorname{GL}(\bar k)}$ is generated as a T-ideal by the values of the coefficients of the characteristic polynomial with sufficiently large number. This result generalizes the well-known Procesi–Razmyslov theorem about trace matrix identities. Besides, by an alternative way we can deduce Donkin's result about the generators of $K[R(Q,\bar k)]^{\operatorname{GL}(\bar k)}$.
Received: 01.01.1998
Bibliographic databases:
UDC: 512.64
Language: Russian
Citation: A. N. Zubkov, “The Procesi–Razmyslov theorem for quiver representations”, Fundam. Prikl. Mat., 7:2 (2001), 387–421
Citation in format AMSBIB
\Bibitem{Zub01}
\by A.~N.~Zubkov
\paper The Procesi--Razmyslov theorem for quiver representations
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 387--421
\mathnet{http://mi.mathnet.ru/fpm580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1866464}
\zmath{https://zbmath.org/?q=an:1014.16016}
Linking options:
  • https://www.mathnet.ru/eng/fpm580
  • https://www.mathnet.ru/eng/fpm/v7/i2/p387
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :167
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024