Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 3, Pages 37–63 (Mi fpm733)  

This article is cited in 15 scientific papers (total in 15 papers)

Algebraic geometry over free metabelian Lie algebras. I. U-algebras and universal classes

E. Yu. Daniyarova, I. V. Kazatchkov, V. N. Remeslennikov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
References:
Abstract: This paper is the first in a series of three, the object of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra $F$. In the current paper, we introduce the notion of a metabelian U-Lie algebra and establish connections between metabelian U-Lie algebras and special matrix Lie algebras. We define the $\Delta$-localization of a metabelian U-Lie algebra $A$ and the direct module extension of the Fitting radical of $A$ and show that these algebras lie in the universal closure of $A$.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 135, Issue 5, Pages 3292–3310
DOI: https://doi.org/10.1007/s10958-006-0159-x
Bibliographic databases:
UDC: 512.554.3
Language: Russian
Citation: E. Yu. Daniyarova, I. V. Kazatchkov, V. N. Remeslennikov, “Algebraic geometry over free metabelian Lie algebras. I. U-algebras and universal classes”, Fundam. Prikl. Mat., 9:3 (2003), 37–63; J. Math. Sci., 135:5 (2006), 3292–3310
Citation in format AMSBIB
\Bibitem{DanKazRem03}
\by E.~Yu.~Daniyarova, I.~V.~Kazatchkov, V.~N.~Remeslennikov
\paper Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 3
\pages 37--63
\mathnet{http://mi.mathnet.ru/fpm733}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2094329}
\zmath{https://zbmath.org/?q=an:1072.17004}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 135
\issue 5
\pages 3292--3310
\crossref{https://doi.org/10.1007/s10958-006-0159-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744739457}
Linking options:
  • https://www.mathnet.ru/eng/fpm733
  • https://www.mathnet.ru/eng/fpm/v9/i3/p37
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :131
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024