|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, Issue 1(29), Pages 49–84
(Mi iimi235)
|
|
|
|
This article is cited in 12 scientific papers (total in 12 papers)
On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
We prove the absence of eigenvalues in the spectrum of two-dimensional periodic Dirac operator with martix coefficients of the class $L^{\infty}$ and strongly subordinate matrix potential. We also obtain conditions for the absence of eigenvalues in the spectrum of two-dimensional periodic Schrödinger operator with variable metric.
Citation:
L. I. Danilov, “On absence of eigenvalues in the spectra of two-dimensional periodic Dirac and Schrödinger operators”, Izv. IMI UdGU, 2004, no. 1(29), 49–84
Linking options:
https://www.mathnet.ru/eng/iimi235 https://www.mathnet.ru/eng/iimi/y2004/i1/p49
|
Statistics & downloads: |
Abstract page: | 387 | Full-text PDF : | 95 | References: | 86 |
|