|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, Issue 1(29), Pages 95–108
(Mi iimi237)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the one-dimensional Schrödinger equation with a perturbed non-local steplike potential
N. I. Pletnikova Udmurt State University, Izhevsk
Abstract:
We consider a Schrödinger operator of the form $H=-\tfrac{d^2}{dx^2}+V$ acting in $L^2(R)$ where $V=V_0\theta (x)+\varepsilon (\cdot ,\varphi _0) \varphi _0$ is non-local potential. We prove that the unique level (i.e. eigenvalue or resonance of the operator $H$) exists for all sufficiently small $\varepsilon $ and $V_0=V_0(\varepsilon)$. We investigate the asymptotic behaviour of this level. (If $V_0(\varepsilon)$ is separated from zero the levels are absent.) We study the asymptotic behaviour of eigenfunctions for $|x|\to \infty$.
Citation:
N. I. Pletnikova, “On the one-dimensional Schrödinger equation with a perturbed non-local steplike potential”, Izv. IMI UdGU, 2004, no. 1(29), 95–108
Linking options:
https://www.mathnet.ru/eng/iimi237 https://www.mathnet.ru/eng/iimi/y2004/i1/p95
|
Statistics & downloads: |
Abstract page: | 293 | Full-text PDF : | 95 | References: | 67 |
|