|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2004, Issue 1(29), Pages 109–124
(Mi iimi238)
|
|
|
|
On scattering of the Schrödinger operator with non-local potential
M. S. Smetanina Udmurt State University, Izhevsk
Abstract:
We consider the Schrödinger operator of the form $H=$ $=-d^2/dx^2+V$ acting in $L^2(R)$ where $V=\varepsilon W(x)+\lambda (\cdot ,\varphi _0)\varphi _0$ is non-local potential and $W(x),\, \varphi _0(x)$ are decreasing functions for $|x| \to \infty$. The existence and completeness of the wave operators is proved. We investigate the asymptotic behaviour of solutions of the Lippmann–Schwinger equation and study the scattering amplitude.
Citation:
M. S. Smetanina, “On scattering of the Schrödinger operator with non-local potential”, Izv. IMI UdGU, 2004, no. 1(29), 109–124
Linking options:
https://www.mathnet.ru/eng/iimi238 https://www.mathnet.ru/eng/iimi/y2004/i1/p109
|
Statistics & downloads: |
Abstract page: | 283 | Full-text PDF : | 98 | References: | 57 |
|