Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, Volume 51, Pages 3–41
DOI: https://doi.org/10.20537/2226-3594-2018-51-01
(Mi iimi352)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia
Full-text PDF (501 kB) Citations (6)
References:
Abstract: We consider the two-dimensional Schrödinger operator $\widehat H_B+V$ with a uniform magnetic field $B$ and a periodic electric potential $V$. The absence of eigenvalues (of infinite multiplicity) in the spectrum of the operator $\widehat H_B+V$ is proved if the electric potential $V$ is a nonconstant trigonometric polynomial and the condition $(2\pi )^{-1}\, Bv(K)=Q^{-1}$ for the magnetic flux is fulfilled where $Q\in \mathbb{N}$ and the $v(K)$ is the area of the elementary cell $K$ of the period lattice $\Lambda \subset \mathbb{R}^2$ of the potential $V$. In this case the singular component of the spectrum is absent so the spectrum is absolutely continuous. In this paper, we use the magnetic Bloch theory. Instead of the lattice $\Lambda $ we choose the lattice $\Lambda _{\, Q}=\{ N_1QE^1+N_2E^2:N_j\in \mathbb{Z} , j=1,2\} $ where $E^1$ and $E^2$ are basis vectors of the lattice $\Lambda $. The operator $\widehat H_B+V$ is unitarily equivalent to the direct integral of the operators $\widehat H_B(k)+V$ with $k\in 2\pi K_{\, Q}^*$ acting on the space of magnetic Bloch functions where $K_{\, Q}^*$ is an elementary cell of the reciprocal lattice $\Lambda _{\, Q}^*\subset \mathbb{R}^2$. The proof of the absence of eigenvalues in the spectrum of the operator $\widehat H_B+V$ is based on the following assertion: if $\lambda $ is an eigenvalue of the operator $\widehat H_B+V$, then the $\lambda $ is an eigenvalue of the operators $\widehat H_B(k+i\varkappa )+V$ for all $k,\, \varkappa \in \mathbb{R}^2$ and, moreover, (under the assumed conditions on the $V$ and the $B$) there is a vector $k_0\in \mathbb{C}^2\, \backslash \, \{0\}$ such that the eigenfunctions of the operators $\widehat H_B(k+\zeta k_0)+V$ with $\zeta \in \mathbb{C}$ are trigonometric polynomials $\sum \zeta ^j\Phi _j$ in $\zeta $.
Keywords: Schrödinger operator, spectrum, periodic electric potential, homogeneous magnetic field.
Received: 18.04.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958, 517.984.5
MSC: 35P05
Language: Russian
Citation: L. I. Danilov, “On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential”, Izv. IMI UdGU, 51 (2018), 3–41
Citation in format AMSBIB
\Bibitem{Dan18}
\by L.~I.~Danilov
\paper On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
\jour Izv. IMI UdGU
\yr 2018
\vol 51
\pages 3--41
\mathnet{http://mi.mathnet.ru/iimi352}
\crossref{https://doi.org/10.20537/2226-3594-2018-51-01}
\elib{https://elibrary.ru/item.asp?id=35269037}
Linking options:
  • https://www.mathnet.ru/eng/iimi352
  • https://www.mathnet.ru/eng/iimi/v51/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:522
    Full-text PDF :237
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025