|
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2005, Issue 1(31), Pages 79–98
(Mi iimi85)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On Weyl almost periodic measure-valued functions
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
We consider measure-valued functions ${\mathbb{R}}\ni t\to \mu [.;t]$ taking values in the metric space $({\mathcal M}_0(U),\rho _w)$ of probability Borel measures defined on the $\sigma$-algebra of Borel subsets of a complete seperable metric space $U$. The metric space $({\mathcal M}_0(U), \rho _w)$ is endowed with the metric $\rho _w$ equivalent to the Lévy–Prokhorov metric. It is proved that the measure-valued function ${\mathbb{R}}\ni t\to \mu\, [\,.\,;t]\in ({\mathcal M}_0(U),\rho _w)$ is Weyl almost periodic if and only if the functions $\int\limits_U{\mathcal F}(x)\, \mu\, [\,dx;\,.\,]$ are Weyl almost periodic (of order 1) for all bounded continuous functions ${\mathcal F}:U\to {\mathbb{R}}$.
Citation:
L. I. Danilov, “On Weyl almost periodic measure-valued functions”, Izv. IMI UdGU, 2005, no. 1(31), 79–98
Linking options:
https://www.mathnet.ru/eng/iimi85 https://www.mathnet.ru/eng/iimi/y2005/i1/p79
|
Statistics & downloads: |
Abstract page: | 324 | Full-text PDF : | 93 | References: | 63 |
|