Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 2, Pages 311–341
DOI: https://doi.org/10.1070/im2000v064n02ABEH000285
(Mi im285)
 

This article is cited in 36 scientific papers (total in 36 papers)

Braid monodromy factorizations and diffeomorphism types

Vik. S. Kulikova, M. Teicherb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Bar-Ilan University, Department of Chemistry
References:
Abstract: In this paper we prove that if two cuspidal plane curves $B_1$ and $B_2$ have equivalent braid monodromy factorizations, then $B_1$ and $B_2$ are smoothly isotopic in $\mathbb C\mathbb P^2$. As a consequence, we obtain that if $S_1$, $S_2$ are surfaces of general type embedded in a projective space by means of a multiple canonical class and if the discriminant curves (the branch curves) $B_1$$B_2$ of some smooth projections of $S_1$$S_2$ to $\mathbb{CP}^2$ have equivalent braid monodromy factorizations, then $S_1$ and $S_2$ are diffeomorphic (as real four-dimensional manifolds).
Received: 29.12.1998
Bibliographic databases:
Document Type: Article
MSC: 14E20
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, M. Teicher, “Braid monodromy factorizations and diffeomorphism types”, Izv. Math., 64:2 (2000), 311–341
Citation in format AMSBIB
\Bibitem{KulTei00}
\by Vik.~S.~Kulikov, M.~Teicher
\paper Braid monodromy factorizations and diffeomorphism types
\jour Izv. Math.
\yr 2000
\vol 64
\issue 2
\pages 311--341
\mathnet{http://mi.mathnet.ru//eng/im285}
\crossref{https://doi.org/10.1070/im2000v064n02ABEH000285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1770673}
\zmath{https://zbmath.org/?q=an:1004.14005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088572200004}
\elib{https://elibrary.ru/item.asp?id=13334257}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0041748681}
Linking options:
  • https://www.mathnet.ru/eng/im285
  • https://doi.org/10.1070/im2000v064n02ABEH000285
  • https://www.mathnet.ru/eng/im/v64/i2/p89
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:638
    Russian version PDF:198
    English version PDF:11
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024