|
This article is cited in 3 scientific papers (total in 5 papers)
Beta functions of local fields of characteristic zero. Applications to string amplitudes
V. S. Vladimirov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
For local fields $\mathbb K$ of characteristic zero, along with the beta function
$\mathbf{B}_{\mathbb K}$ we introduce a new sequence $\mathbf{B}_{\mathbb K}^{(n)}$, $n=1,2,\dots$, of beta functions of $n$ complex arguments expressed in terms of a product of gamma functions $\boldsymbol{\Gamma}_{\mathbb K}$ for arbitrary characters (ramified or not). We consider applications to the 4-particle tree string and superstring amplitudes. It turns out that the tachyon string amplitudes can be expressed in terms of the well-known beta function $\mathbf{B}_{\mathbb K}=\mathbf{B}_{\mathbb K}^{(2)}$. The massless superstring amplitudes can be expressed in terms of the new beta function
$\mathbf{B}'_{\mathbb K}=\mathbf{B}_{\mathbb K}^{(3)}$ for non-trivial characters. We establish that the amplitudes of all known strings and superstrings admit adelic formulae.
We give a new proof of the formula relating the 4-particle tree amplitudes for closed strings (generalized Virasoro amplitudes) to the product of two amplitudes for open strings (classical Veneziano amplitudes).
Received: 05.10.2001
Citation:
V. S. Vladimirov, “Beta functions of local fields of characteristic zero. Applications to string amplitudes”, Izv. Math., 66:1 (2002), 41–57
Linking options:
https://www.mathnet.ru/eng/im370https://doi.org/10.1070/IM2002v066n01ABEH000370 https://www.mathnet.ru/eng/im/v66/i1/p43
|
| Statistics & downloads: |
| Abstract page: | 705 | | Russian version PDF: | 484 | | English version PDF: | 73 | | References: | 100 | | First page: | 4 |
|