Abstract:
We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith–Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with pg=q=0 and K2=9.
These surfaces also provide new counterexamples to the “Dif = Def” problem.
\Bibitem{KulKha02}
\by Vik.~S.~Kulikov, V.~M.~Kharlamov
\paper On real structures on rigid surfaces
\jour Izv. Math.
\yr 2002
\vol 66
\issue 1
\pages 133--150
\mathnet{http://mi.mathnet.ru/eng/im374}
\crossref{https://doi.org/10.1070/IM2002v066n01ABEH000374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1917540}
\zmath{https://zbmath.org/?q=an:1055.14060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0042343154}
Linking options:
https://www.mathnet.ru/eng/im374
https://doi.org/10.1070/IM2002v066n01ABEH000374
https://www.mathnet.ru/eng/im/v66/i1/p133
This publication is cited in the following 40 articles:
Lai Ch.-J., Yeung S.-K., “Examples of Surfaces With Canonical Map of Maximal Degree”, Taiwan. J. Math., 25:4 (2021), 699–716
Borisov L.A., Keum J., “Explicit Equations of a Fake Projective Plane”, Duke Math. J., 169:6 (2020), 1135–1162
Borisov L.A., Yeung S.-K., “Explicit Equations of the Cartwright-Steger Surface”, Epijournal Geom. Algebr., 4 (2020), 10
Catanese F., Keum J., “The Bicanonical Map of Fake Projective Planes With An Automorphism”, Int. Math. Res. Notices, 2020:21 (2020), 7747–7768
Vik. S. Kulikov, “On divisors of small canonical degree on Godeaux surfaces”, Sb. Math., 209:8 (2018), 1155–1163
Yeung S.-K., “Foliations Associated to Harmonic Maps on Some Complex Two Ball Quotients”, Sci. China-Math., 60:6, SI (2017), 1137–1148
Dubouloz A. Mangolte F., “Fake Real Planes: Exotic Affine Algebraic Models of R-2”, Sel. Math.-New Ser., 23:3 (2017), 1619–1668
Adrien Dubouloz, Frédéric Mangolte, “Real frontiers of fake planes”, European Journal of Mathematics, 2:1 (2016), 140
Sergey Galkin, Ludmil Katzarkov, Anton Mellit, Evgeny Shinder, “Derived categories of Keum's fake projective planes”, Advances in Mathematics, 278 (2015), 238
V.S.. Kulikov, Eugenii Shustin, “On rigid plane curves”, European Journal of Mathematics, 2015
F. Catanese, “Topological methods in moduli theory”, Bull. Math. Sci, 2015
Keum J., “Q-Homology Projective Planes With Nodes Or Cusps”, Algebraic Geometry in East Asia - Taipei 2011, Advanced Studies in Pure Mathematics, 65, eds. Chen J., Chen M., Kawamata Y., Keum J., Math Soc Japan, 2015, 143–158
Vik. S. Kulikov, V. M. Kharlamov, “On numerically pluricanonical cyclic coverings”, Izv. Math., 78:5 (2014), 986–1005
Yeung S.-K., “Classification of Surfaces of General Type with Euler Number 3”, J. Reine Angew. Math., 679 (2013), 1–22
NERMİN SALEPCİ, “CLASSIFICATION OF TOTALLY REAL ELLIPTIC LEFSCHETZ FIBRATIONS VIA NECKLACE DIAGRAMS”, J. Knot Theory Ramifications, 21:09 (2012), 1250089
Sai-Kee Yeung, “Exotic structures arising from fake projective planes”, Sci. China Math, 2012
Prasad G., Yeung S.-K., “Nonexistence of Arithmetic Fake Compact Hermitian Symmetric Spaces of Type Other Than a(N) (N <= 4)”, J. Math. Soc. Jpn., 64:3 (2012), 683–731
Keum J., “Toward a Geometric Construction of Fake Projective Planes”, Rend. Lincei-Mat. Appl., 23:2 (2012), 137–155
Bauer I., Catanese F., Pignatelli R., “Surfaces of General Type with Geometric Genus Zero: a Survey”, Complex and Differential Geometry, Springer Proceedings in Mathematics, 8, eds. Ebeling W., Hulek K., Smoczyk K., Springer-Verlag Berlin, 2011, 1–48
Cartwright D.I., Steger T., “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1-2 (2010), 11–13