Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 2, Pages 367–376
DOI: https://doi.org/10.1070/IM2002v066n02ABEH000381
(Mi im381)
 

This article is cited in 150 scientific papers (total in 150 papers)

Wavelet theory as $p$-adic spectral analysis

S. V. Kozyrev
References:
Abstract: We construct a new orthonormal basis of eigenfunctions of the Vladimirov $p$-adic fractional differentiation operator. We construct a map of the $p$-adic numbers onto the real numbers (the $p$-adic change of variables), which transforms the Haar measure on the $p$-adic numbers to the Lebesgue measure on the positive semi-axis. The $p$-adic change of variables (for $p=2$) provides an equivalence between the basis of eigenfunctions of the Vladimirov operator and the wavelet basis in $L^2({\mathbb R}_+)$ generated by the Haar wavelet. This means that wavelet theory can be regarded as $p$-adic spectral analysis.
Received: 23.02.2001
Bibliographic databases:
Document Type: Article
UDC: 517.58+517.53.02
MSC: 26E30, 46S10
Language: English
Original paper language: Russian
Citation: S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376
Citation in format AMSBIB
\Bibitem{Koz02}
\by S.~V.~Kozyrev
\paper Wavelet theory as $p$-adic spectral analysis
\jour Izv. Math.
\yr 2002
\vol 66
\issue 2
\pages 367--376
\mathnet{http://mi.mathnet.ru//eng/im381}
\crossref{https://doi.org/10.1070/IM2002v066n02ABEH000381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918846}
\zmath{https://zbmath.org/?q=an:1016.42025}
\elib{https://elibrary.ru/item.asp?id=14114380}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3843060681}
Linking options:
  • https://www.mathnet.ru/eng/im381
  • https://doi.org/10.1070/IM2002v066n02ABEH000381
  • https://www.mathnet.ru/eng/im/v66/i2/p149
  • This publication is cited in the following 150 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:2673
    Russian version PDF:589
    English version PDF:50
    References:97
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024