Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 1, Pages 125–158
DOI: https://doi.org/10.1070/IM2004v068n01ABEH000468
(Mi im468)
 

This article is cited in 6 scientific papers (total in 6 papers)

A factorization formula for the full twist of double the number of strings

Vik. S. Kulikov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We give a formula for factorizing the full twist in the braid group $\operatorname{Br}_{2m}$ in terms of four factorizations of the full twist in$\operatorname{Br}_{m}$. This formula is used to construct a symplectic 4-manifold $X$ and two regularly homotopic generic coverings $f_i\colon X\to\mathbb C\mathbb P^2$ branched along cuspidal Hurwitz curves $\overline H_i\subset\mathbb C\mathbb P^2$ (without negative nodes) having different braid monodromy factorization types. The class of fundamental groups of complements of affine plane Hurwitz curves is described in terms of generators and defining relations.
Received: 26.08.2003
Bibliographic databases:
Document Type: Article
UDC: 512.722.1+514.756.44
MSC: 14E20
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “A factorization formula for the full twist of double the number of strings”, Izv. Math., 68:1 (2004), 125–158
Citation in format AMSBIB
\Bibitem{Kul04}
\by Vik.~S.~Kulikov
\paper A~factorization formula for the full twist of double the number of strings
\jour Izv. Math.
\yr 2004
\vol 68
\issue 1
\pages 125--158
\mathnet{http://mi.mathnet.ru//eng/im468}
\crossref{https://doi.org/10.1070/IM2004v068n01ABEH000468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2096939}
\zmath{https://zbmath.org/?q=an:1064.57027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221332600004}
\elib{https://elibrary.ru/item.asp?id=13457967}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645528814}
Linking options:
  • https://www.mathnet.ru/eng/im468
  • https://doi.org/10.1070/IM2004v068n01ABEH000468
  • https://www.mathnet.ru/eng/im/v68/i1/p123
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1123
    Russian version PDF:219
    English version PDF:24
    References:84
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024