Abstract:
We give a formula for factorizing the full twist in the braid group Br2m
in terms of four factorizations of the full twist inBrm. This formula is used to construct a symplectic 4-manifold X and two regularly homotopic generic coverings
fi:X→CP2 branched along cuspidal Hurwitz curves
¯Hi⊂CP2 (without negative nodes) having different braid monodromy factorization types. The class of fundamental groups of complements of affine plane Hurwitz curves is described in terms of generators and defining relations.
\Bibitem{Kul04}
\by Vik.~S.~Kulikov
\paper A~factorization formula for the full twist of double the number of strings
\jour Izv. Math.
\yr 2004
\vol 68
\issue 1
\pages 125--158
\mathnet{http://mi.mathnet.ru/eng/im468}
\crossref{https://doi.org/10.1070/IM2004v068n01ABEH000468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2096939}
\zmath{https://zbmath.org/?q=an:1064.57027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221332600004}
\elib{https://elibrary.ru/item.asp?id=13457967}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645528814}
Linking options:
https://www.mathnet.ru/eng/im468
https://doi.org/10.1070/IM2004v068n01ABEH000468
https://www.mathnet.ru/eng/im/v68/i1/p123
This publication is cited in the following 6 articles: