|
This article is cited in 6 scientific papers (total in 6 papers)
Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators
G. M. Gubreev South Ukrainian State K. D. Ushynsky Pedagogical University
Abstract:
We define abstract Mittag-Leffler kernels with values in a separable Hilbert space. A Mittag-Leffler kernel is said to be $c$-regular (resp. $d$-regular) if it generates an integral transform of Fourier–Dzhrbashyan type (resp. if the space has an unconditional basis consisting of values of the kernel). We give a complete description of $d$-regular and $c$-regular kernels, which enables us to answer a question of M. G. Krein. We apply the notion of a regular Mittag-Leffler kernel to construct the spectral decomposition for one-dimensional perturbations of fractional powers of dissipative Volterra operators.
Received: 05.08.2003
Citation:
G. M. Gubreev, “Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators”, Izv. Math., 69:1 (2005), 15–57
Linking options:
https://www.mathnet.ru/eng/im623https://doi.org/10.1070/IM2005v069n01ABEH000520 https://www.mathnet.ru/eng/im/v69/i1/p17
|
Statistics & downloads: |
Abstract page: | 581 | Russian version PDF: | 312 | English version PDF: | 26 | References: | 88 | First page: | 1 |
|