Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 1, Pages 15–57
DOI: https://doi.org/10.1070/IM2005v069n01ABEH000520
(Mi im623)
 

This article is cited in 6 scientific papers (total in 6 papers)

Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators

G. M. Gubreev

South Ukrainian State K. D. Ushynsky Pedagogical University
References:
Abstract: We define abstract Mittag-Leffler kernels with values in a separable Hilbert space. A Mittag-Leffler kernel is said to be $c$-regular (resp. $d$-regular) if it generates an integral transform of Fourier–Dzhrbashyan type (resp. if the space has an unconditional basis consisting of values of the kernel). We give a complete description of $d$-regular and $c$-regular kernels, which enables us to answer a question of M. G. Krein. We apply the notion of a regular Mittag-Leffler kernel to construct the spectral decomposition for one-dimensional perturbations of fractional powers of dissipative Volterra operators.
Received: 05.08.2003
Bibliographic databases:
UDC: 517.43+513.88
Language: English
Original paper language: Russian
Citation: G. M. Gubreev, “Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators”, Izv. Math., 69:1 (2005), 15–57
Citation in format AMSBIB
\Bibitem{Gub05}
\by G.~M.~Gubreev
\paper Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators
\jour Izv. Math.
\yr 2005
\vol 69
\issue 1
\pages 15--57
\mathnet{http://mi.mathnet.ru/eng/im623}
\crossref{https://doi.org/10.1070/IM2005v069n01ABEH000520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2128179}
\zmath{https://zbmath.org/?q=an:1105.47015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228925000002}
\elib{https://elibrary.ru/item.asp?id=9148955}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645558608}
Linking options:
  • https://www.mathnet.ru/eng/im623
  • https://doi.org/10.1070/IM2005v069n01ABEH000520
  • https://www.mathnet.ru/eng/im/v69/i1/p17
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:581
    Russian version PDF:312
    English version PDF:26
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025