Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 2, Pages 378–406
DOI: https://doi.org/10.1070/IM2013v077n02ABEH002640
(Mi im7923)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quantum field theories on algebraic curves. I. Additive bosons

L. A. Takhtajanab

a Department of Mathematics, Stony Brook University
b Euler International Mathematical Institute
References:
Abstract: Using Serre's adelic interpretation of cohomology, we develop a ‘differential and integral calculus’ on an algebraic curve $X$ over an algebraically closed field $k$ of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on $X$ and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve $X$. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the $k$-vector space of rational functions on $X$ to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.
Keywords: algebraic curves and algebraic functions, adèles, additive multi-valued functions, additive Ward identities, Heisenberg algebra, current algebra on an algebraic curve, generalized residue theorem, Fock spaces, quantum theories of free bosons on an algebraic curve, expectation value functional.
Funding agency Grant number
National Science Foundation DMS-0204628
DMS-0705263
DMS-1005769
Received: 11.10.2011
Revised: 19.04.2012
Bibliographic databases:
Document Type: Article
UDC: 512.626+512.772+512.815.8+530.145
MSC: 81R10, 14H81
Language: English
Original paper language: Russian
Citation: L. A. Takhtajan, “Quantum field theories on algebraic curves. I. Additive bosons”, Izv. Math., 77:2 (2013), 378–406
Citation in format AMSBIB
\Bibitem{Tak13}
\by L.~A.~Takhtajan
\paper Quantum field theories on algebraic curves. I.~Additive bosons
\jour Izv. Math.
\yr 2013
\vol 77
\issue 2
\pages 378--406
\mathnet{http://mi.mathnet.ru//eng/im7923}
\crossref{https://doi.org/10.1070/IM2013v077n02ABEH002640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3097571}
\zmath{https://zbmath.org/?q=an:06170776}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..378T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318276000007}
\elib{https://elibrary.ru/item.asp?id=20359176}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877025976}
Linking options:
  • https://www.mathnet.ru/eng/im7923
  • https://doi.org/10.1070/IM2013v077n02ABEH002640
  • https://www.mathnet.ru/eng/im/v77/i2/p165
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:672
    Russian version PDF:233
    English version PDF:16
    References:56
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024