Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 4, Pages 751–758
DOI: https://doi.org/10.1070/IM8392
(Mi im8392)
 

This article is cited in 6 scientific papers (total in 6 papers)

Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$

Yu. I. Manin

Max Planck Institute for Mathematics
References:
Abstract: The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to $\mathbf{F}_1$ and suggests its role in a possible relation of the $\Gamma_{\mathbf{R}}$-factor to `real geometry over $\mathbf{F}_1$' (cf. [2]).
Keywords: cusp forms, period polynomials, local factors.
Received: 20.04.2015
Revised: 01.09.2015
Bibliographic databases:
Document Type: Article
UDC: 511.334
MSC: 11F67
Language: English
Original paper language: English
Citation: Yu. I. Manin, “Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$”, Izv. Math., 80:4 (2016), 751–758
Citation in format AMSBIB
\Bibitem{Man16}
\by Yu.~I.~Manin
\paper Local zeta factors and geometries under $\operatorname{Spec}\mathbf Z$
\jour Izv. Math.
\yr 2016
\vol 80
\issue 4
\pages 751--758
\mathnet{http://mi.mathnet.ru//eng/im8392}
\crossref{https://doi.org/10.1070/IM8392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535360}
\zmath{https://zbmath.org/?q=an:06640629}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..751M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384882700006}
\elib{https://elibrary.ru/item.asp?id=26414239}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987653222}
Linking options:
  • https://www.mathnet.ru/eng/im8392
  • https://doi.org/10.1070/IM8392
  • https://www.mathnet.ru/eng/im/v80/i4/p123
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:113
    English version PDF:24
    References:72
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024