|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Threefold extremal contractions of type (IIA). I
S. Moriab, Yu. G. Prokhorovcde a Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
b Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
d Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
e National Research University "Higher School of Economics" (HSE), Moscow
Аннотация:
Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.
Ключевые слова:
extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.
Поступило в редакцию: 28.01.2016
Образец цитирования:
S. Mori, Yu. G. Prokhorov, “Threefold extremal contractions of type (IIA). I”, Изв. РАН. Сер. матем., 80:5 (2016), 77–102; Izv. Math., 80:5 (2016), 884–909
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/im8516https://doi.org/10.4213/im8516 https://www.mathnet.ru/rus/im/v80/i5/p77
|
Статистика просмотров: |
Страница аннотации: | 559 | PDF русской версии: | 66 | PDF английской версии: | 22 | Список литературы: | 68 | Первая страница: | 23 |
|