Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 540–564
DOI: https://doi.org/10.1070/IM8739
(Mi im8739)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic bounds for spherical codes

Yu. I. Manina, M. Marcollib

a Max–Planck–Institute für Mathematik, Bonn, Germany
b California Institute of Technology, Pasadena, USA
References:
Abstract: The set of all error-correcting codes $C$ over a fixed finite alphabet $\mathbf{F}$ of cardinality $q$ determines the set of code points in the unit square $[0,1]^2$ with coordinates $(R(C), \delta (C))$:= (relative transmission rate, relative minimal distance). The central problem of the theory of such codes consists in maximising simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in inventing explicit constructions of “good codes” and comparing new classes of codes with earlier ones.
A less classical approach studies the geometry of the whole set of code points $(R,\delta)$ (with $q$ fixed), at first independently of its computability properties, and only afterwards turning to problems of computability, analogies with statistical physics, and so on.
The main purpose of this article consists in extending this latter strategy to the domain of spherical codes.
Keywords: error-correcting codes, spherical codes, asymptotic bounds.
Funding agency Grant number
National Science Foundation DMS-1707882
Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2018-04937
The second author is supported by NSF grant DMS-1707882 and NSERC grant RGPIN-2018-04937.
Received: 27.11.2017
Bibliographic databases:
Document Type: Article
UDC: 519.725+514.174.2
MSC: 94B60, 94B65
Language: English
Original paper language: Russian
Citation: Yu. I. Manin, M. Marcolli, “Asymptotic bounds for spherical codes”, Izv. Math., 83:3 (2019), 540–564
Citation in format AMSBIB
\Bibitem{ManMar19}
\by Yu.~I.~Manin, M.~Marcolli
\paper Asymptotic bounds for spherical codes
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 540--564
\mathnet{http://mi.mathnet.ru//eng/im8739}
\crossref{https://doi.org/10.1070/IM8739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954309}
\zmath{https://zbmath.org/?q=an:1409.94946}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..540M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800006}
\elib{https://elibrary.ru/item.asp?id=37652146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086830364}
Linking options:
  • https://www.mathnet.ru/eng/im8739
  • https://doi.org/10.1070/IM8739
  • https://www.mathnet.ru/eng/im/v83/i3/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:447
    Russian version PDF:45
    English version PDF:32
    References:49
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024