Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 565–612
DOI: https://doi.org/10.1070/IM8833
(Mi im8833)
 

This article is cited in 4 scientific papers (total in 4 papers)

Threefold extremal curve germs with one non-Gorenstein point

Sh. Moriab, Yu. G. Prokhorovcde

a Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
b Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
d Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
e National Research University "Higher School of Economics", Moscow
References:
Abstract: An extremal curve germ is the analytic germ of a threefold with terminal singularities along a reduced complete curve admitting a contraction whose fibres have dimension at most one. The aim of the present paper is to review the results concerning contractions whose central fibre is irreducible and contains only one non-Gorenstein point.
Keywords: extremal curve germ, terminal singularity, canonical divisor, birational map, blow-up, flip, $Q$-conic bundle.
Funding agency Grant number
Japan Society for the Promotion of Science JP25287005
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
Ministry of Education and Science of the Russian Federation 5-100
This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research centre located in Kyoto University. The first author was supported by a JSPS grant no. JP25287005. The second author was supported by the Programme of the Presidium of the Russian Academy of Sciences no. 01 ‘Fundamental mathematics and its applications’ under grant PRAS-18-01 and the Russian Academic Excellence Project ‘5-100’.
Received: 28.06.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 3, Pages 158–212
DOI: https://doi.org/10.4213/im8833
Bibliographic databases:
Document Type: Article
UDC: 512.776
Language: English
Original paper language: Russian
Citation: Sh. Mori, Yu. G. Prokhorov, “Threefold extremal curve germs with one non-Gorenstein point”, Izv. RAN. Ser. Mat., 83:3 (2019), 158–212; Izv. Math., 83:3 (2019), 565–612
Citation in format AMSBIB
\Bibitem{MorPro19}
\by Sh.~Mori, Yu.~G.~Prokhorov
\paper Threefold extremal curve germs with one non-Gorenstein point
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 3
\pages 158--212
\mathnet{http://mi.mathnet.ru/im8833}
\crossref{https://doi.org/10.4213/im8833}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954310}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..565M}
\elib{https://elibrary.ru/item.asp?id=37652147}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 565--612
\crossref{https://doi.org/10.1070/IM8833}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086819415}
Linking options:
  • https://www.mathnet.ru/eng/im8833
  • https://doi.org/10.1070/IM8833
  • https://www.mathnet.ru/eng/im/v83/i3/p158
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:546
    Russian version PDF:49
    English version PDF:23
    References:53
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024