Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 6, Pages 1224–1249
DOI: https://doi.org/10.1070/IM8992
(Mi im8992)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes

A. Yu. Tryninab

a Saratov State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: Let sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ satisfy the relations $\alpha_n\in\mathbb{R}$, $\beta_n\in\mathbb{R}$, $\alpha_n=o(\sqrt{n/\ln n})$, $\beta_n=o(\sqrt{n/\ln n})$ as $n\to \infty $, and let $[a,b]\subset (0,\pi)$ and $f\in C[a,b]$. We redefine the function $f$ as $F$ on the interval $[0,\pi]$ by polygonal arcs in such a way that the function remains continuous and vanishes on a neighbourhood of the ends of the interval. Also let the function $f$ and the pair of sequences $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ be connected by the equiconvergence condition. Then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that $f$ have bounded variation $V^{b}_{a}(f)<\infty$ on $[a,b]$. In particular, if the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are bounded, then for the classical Lagrange–Jacobi interpolation processes $\mathcal{L}_n^{(\alpha_n,\beta_n)}(F,\cos\theta)$ to approximate $f$ uniformly with respect to $\theta $ on $[a,b]$ it is sufficient that the variation of $f$ be bounded on $[a,b]$, $V^{b}_{a}(f)<\infty$.
Keywords: sinc-approximations, interpolation of functions, uniform approximation, interpolation polynomials, bounded variation.
Received: 19.11.2019
Revised: 21.01.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.85
MSC: 41A10
Language: English
Original paper language: Russian
Citation: A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
Citation in format AMSBIB
\Bibitem{Try20}
\by A.~Yu.~Trynin
\paper On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a~matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes
\jour Izv. Math.
\yr 2020
\vol 84
\issue 6
\pages 1224--1249
\mathnet{http://mi.mathnet.ru/eng/im8992}
\crossref{https://doi.org/10.1070/IM8992}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181039}
\zmath{https://zbmath.org/?q=an:1466.41002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84.1224T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000605286500001}
\elib{https://elibrary.ru/item.asp?id=45023677}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099026221}
Linking options:
  • https://www.mathnet.ru/eng/im8992
  • https://doi.org/10.1070/IM8992
  • https://www.mathnet.ru/eng/im/v84/i6/p197
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:407
    Russian version PDF:72
    English version PDF:65
    References:51
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025