International Mathematics Research Notices. IMRN
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


International Mathematics Research Notices. IMRN, 2013, выпуск 6, страницы 1324–1403
DOI: https://doi.org/10.1093/imrn/rns022
(Mi imrn6)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Toric genera of homogeneous spaces and their fibrations

V. M. Buchstaberab, S. Terzićc

a Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina Street 8, 119991 Moscow, Russia
b School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
c Faculty of Science, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
Аннотация: The aim of this paper is to further study the universal toric genus of compact homogeneous spaces and their homogeneous fibrations. We consider the homogeneous spaces with positive Euler characteristic. It is well known that such spaces carry many stable complex structures equivariant under the canonical action of the maximal torus $T^k$. As the torus action in this case only has isolated fixed points it is possible to effectively apply localization formula for the universal toric genus. Using this, we prove that the famous topological results related to rigidity and multiplicativity of a Hirzebruch genus can be obtained on homogeneous spaces just using representation theory. In this context, for homogeneous $SU$-spaces, we prove the well-known result about rigidity of the Krichever genus. We also prove that for a large class of stable complex homogeneous spaces any $T^k$-equivariant Hirzebruch genus given by an odd-power series vanishes. With regard to the problem of multiplicativity, we provide construction of stable complex $T^k$-fibrations for which the universal toric genus is twistedly multiplicative. We prove that it is always twistedly multiplicative for almost complex homogeneous fibrations and describe those fibrations for which it is multiplicative. As a consequence for such fibrations the strong relations between rigidity and multiplicativity for an equivariant Hirzebruch genus is established. The universal toric genus of the fibrations for which the base does not admit any stable complex structure is also considered. The main examples here for which we compute the universal toric genus are the homogeneous fibrations over quaternionic projective spaces.
Поступила в редакцию: 28.02.2011
Исправленный вариант: 15.12.2011
Принята в печать: 24.01.2012
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/imrn6
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:145
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024