Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 140, Pages 50–67 (Mi into234)  

Spectral problem for the curl of a vector field in a nonorthogonal coordinate system

G. G. Islamov

Udmurt State University, Izhevsk
Abstract: We discuss computational aspects of the spectral problem for the curl of a vector field that allow one to find tangent fields to coordinate surfaces of a given curvilinear coordinate system.
Keywords: force-free field, curl, spectral problem, local nonorthogonal coordinate system, transition matrix, biorthogonal basis, tangent field, coordinate surface.
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 4, Pages 430–447
DOI: https://doi.org/10.1007/s10958-019-04435-2
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 78A25, 83C50
Language: Russian
Citation: G. G. Islamov, “Spectral problem for the curl of a vector field in a nonorthogonal coordinate system”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 50–67; Journal of Mathematical Sciences, 241:4 (2019), 430–447
Citation in format AMSBIB
\Bibitem{Isl17}
\by G.~G.~Islamov
\paper Spectral problem for the curl of a vector field in a nonorthogonal coordinate system
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 140
\pages 50--67
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799895}
\zmath{https://zbmath.org/?q=an:1428.78007}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 430--447
\crossref{https://doi.org/10.1007/s10958-019-04435-2}
Linking options:
  • https://www.mathnet.ru/eng/into234
  • https://www.mathnet.ru/eng/into/v140/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :165
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024