Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, Volume 24, Issue 2, Pages 173–183
DOI: https://doi.org/10.18500/1816-9791-2024-24-2-173-183
(Mi isu1018)
 

Scientific Part
Mathematics

New integral inequalities in the class of functions $(h,m)$-convex

J. E. Nápolesab, P. M. Guzmánac, B. Bayraktard

a National University of the Northeast (UNNE), FaCENA, Ave. Libertad 5450, Corrientes 3400, Argentina
b Universidad Tecnológica Nacional (UTN), French 414, Resistencia, Chaco 3500, Argentina
c National University of the Northeast (UNNE), Facultad de Ciencias Agrarias, Juan Bautista Cabral 2131, Corrientes 3400, Argentina
d Bursa Uludag University, Faculty of Education Gorukle Campus, Bursa 16059, Turkey
References:
Abstract: In this article, we have defined new weighted integral operators. We formulated a lemma in which we obtained a generalized identity through these integral operators. Using this identity, we obtain some new generalized Simpson's type inequalities for $(h,m)$-convex functions. These results we obtained using the convexity property, the classical Hölder inequality, and its other form, the power mean inequality. The generality of our results lies in two fundamental points: on the one hand, the integral operator used and, on the other, the notion of convexity. The first, because the “weight” allows us to encompass many known integral operators (including the classic Riemann and Riemann – Liouville), and the second, because, under an adequate selection of the parameters, our notion of convexity contains several known notions of convexity. This allows us to show that many of the results reported in the literature are particular cases of ours.
Key words: convex functions, $(m,h)$-convex functions, Simpson's type inequality, Hermite – Hadamard inequality, Hölder inequality, weighted integrals.
Received: 28.03.2023
Accepted: 10.10.2023
Bibliographic databases:
Document Type: Article
UDC: 517.518.86:517.218.244:517.927.2
Language: English
Citation: J. E. Nápoles, P. M. Guzmán, B. Bayraktar, “New integral inequalities in the class of functions $(h,m)$-convex”, Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024), 173–183
Citation in format AMSBIB
\Bibitem{NapGuzBay24}
\by J.~E.~N\'apoles, P.~M.~Guzm\'an, B.~Bayraktar
\paper New integral inequalities in the class of functions $(h,m)$-convex
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2024
\vol 24
\issue 2
\pages 173--183
\mathnet{http://mi.mathnet.ru/isu1018}
\crossref{https://doi.org/10.18500/1816-9791-2024-24-2-173-183}
\edn{https://elibrary.ru/WYDLVW}
Linking options:
  • https://www.mathnet.ru/eng/isu1018
  • https://www.mathnet.ru/eng/isu/v24/i2/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :24
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025