Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, Volume 24, Issue 2, Pages 200–208
DOI: https://doi.org/10.18500/1816-9791-2024-24-2-200-208
(Mi isu1021)
 

Scientific Part
Mathematics

Global solvability of the inverse spectral problem for differential systems on a finite interval

V. A. Yurko

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
References:
Abstract: The inverse spectral problem is studied for non-selfadjoint systems of ordinary differential equations on a finite interval. We provide necessary and sufficient conditions for the global solvability of the inverse problem, along with an algorithm for constructing its solution. For solving this nonlinear inverse problem, we develop ideas of the method of spectral mappings, which allows one to construct the potential matrix from the given spectral characteristics and establish conditions for the global solvability of the inverse problem considered.
Key words: differential systems, spectral characteristics, inverse problems, method of spectral mappings, global solvability.
Received: 29.11.2022
Accepted: 24.05.2023
Bibliographic databases:
Document Type: Article
UDC: 539.374
Language: English
Citation: V. A. Yurko, “Global solvability of the inverse spectral problem for differential systems on a finite interval”, Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024), 200–208
Citation in format AMSBIB
\Bibitem{Yur24}
\by V.~A.~Yurko
\paper Global solvability of the inverse spectral problem for differential systems on a finite interval
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2024
\vol 24
\issue 2
\pages 200--208
\mathnet{http://mi.mathnet.ru/isu1021}
\crossref{https://doi.org/10.18500/1816-9791-2024-24-2-200-208}
\edn{https://elibrary.ru/ZORJSE}
Linking options:
  • https://www.mathnet.ru/eng/isu1021
  • https://www.mathnet.ru/eng/isu/v24/i2/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :32
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025