Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 1, Pages 79–89
DOI: https://doi.org/10.18500/1816-9791-2015-15-1-79-89
(Mi isu568)
 

This article is cited in 5 scientific papers (total in 6 papers)

Mechanics

On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua

V. A. Kovaleva, E. V. Murashkinb, Yu. N. Radayevc

a Moscow City Government University of Management Moscow, 28, Sretenka str., 107045, Moscow, Russia
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoe shosse, 115409, Moscow, Russia
c Institute for Problems in Mechanics of RAS, 101-1, Vernadskogo ave., 119526, Moscow, Russia
Full-text PDF (223 kB) Citations (6)
References:
Abstract: The present study is devoted to problem of propagating surfaces of weak and strong discontinuities of translational displacements, microrotations and temperature in micropolar (MP) thermoelastic (TE) continua. Problems of propagation of weak discontinuities in type-I MPTE continua are discussed. Geometrical and kinematical compatibility conditions due to Hadamard and Thomas are used to study possible wave surfaces of weak discontinuities. Weak discontinuities are discriminated according to spatial orientations of the discontinuities polarization vectors (DPVs). It is shown that the surfaces of weak discontinuities can propagate exist without weak discontinuities of the temperature field. Second part of the paper is concerned the discussions of the propagating surfaces of strong discontinuities of field variables in type-II MPTE continua. Constitutive relations for hyperbolic thermoelastic type-II micropolar continuum is derived by the field theory. The special form of the first variation of the action integral is used in order to obtained $4$-covariant jump conditions on wave surfaces. Three-dimensional form of the jump conditions on the surface of a strong discontinuity of thermoelastic field are derived from $4$-covariant form.
Key words: micropolar thermoelasticity, type-I continuum, type-II continuum, weak discontinuity, strong discontinuity, shock wave, longitudinal wave, transverse wave, compatibility condition, jump.
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: English
Citation: V. A. Kovalev, E. V. Murashkin, Yu. N. Radayev, “On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua”, Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015), 79–89
Citation in format AMSBIB
\Bibitem{KovMurRad15}
\by V.~A.~Kovalev, E.~V.~Murashkin, Yu.~N.~Radayev
\paper On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 1
\pages 79--89
\mathnet{http://mi.mathnet.ru/isu568}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-1-79-89}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439742500012}
\elib{https://elibrary.ru/item.asp?id=23144244}
Linking options:
  • https://www.mathnet.ru/eng/isu568
  • https://www.mathnet.ru/eng/isu/v15/i1/p79
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :137
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024