Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, Volume 19, Issue 2, Pages 126–133
DOI: https://doi.org/10.18500/1816-9791-2019-19-2-126-133
(Mi isu795)
 

Scientific Part
Mathematics

Martingale inequalities in symmetric spaces with semimultiplicative weight

S. S. Volosivets, N. N. Zaitsev

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
References:
Abstract: Let $(\Omega,\Sigma,P)$ be a complete probability space, $\mathcal F=\{\mathcal F_n\}^\infty_{n=0}$ be an increasing sequence of $\sigma$-algebras such that $\cup^\infty_{n=0}\mathcal F_n$ generates $\Sigma$. If $f=\{f_n\}^\infty_{n=0}$ is a martingale with respect to $\mathcal F$ and $\mathbb E_n$ is the conditional expectation with respect to $\mathcal F_n$, then one can introduce a maximal function $M(f)=\sup_{n\geq 0}|f_n|$ and a square function $S(f)=\left(\sum\limits^\infty_{i=0}|f_i-f_{i-1}|^2\right)^{1/2}$, $f_{-1}=0$. In the case of uniformly integrable martingales there exists $g\in L^1(\Omega)$ such that $\mathbb E_ng=f_n$ and we consider a sharp maximal function $f^\sharp=\sup_{n\geq 0}\mathbb E_n|g-f_{n-1}|$. The result of Burkholder – Davis – Gundy is that $C_1\|M(f)\|_p\leq \|S(f)\|_p\leq C_2\|M(f)\|$ for $1<p<\infty$, where $\|\cdot\|_p$ is the norm in $L^p(\Omega)$ and $C_2>C_1>0$. We call the inequality of type $\|M(f)\|_p\leq C\|f^\sharp\|_p$, $1<p<\infty$ Fefferman – Stein inequality. It is known that Burkholder – Davis – Gundy martingale inequality is valid in rearrangement invariant Banach function spaces with non-trivial Boyd indices. We prove this inequality in a more wide class of symmetric spaces (the last notion is defined as in the famous monograph by S. G. Krein, Yu. I. Petunin and E. M. Semenov) with semimultiplicative weight. Also, the Fefferman – Stein type inequalities of sharp maximal function and sharp square functions are obtained in this class of symmetric spaces.
Key words: martingale, maximal function, maximal sharp function, square function of martingale, Burkholder – Davis – Gundy inequality, semimultiplicative function.
Received: 20.04.2018
Revised: 04.02.2019
Accepted: 28.05.2019
Bibliographic databases:
Document Type: Article
UDC: 519.216.8
Language: Russian
Citation: S. S. Volosivets, N. N. Zaitsev, “Martingale inequalities in symmetric spaces with semimultiplicative weight”, Izv. Saratov Univ. Math. Mech. Inform., 19:2 (2019), 126–133
Citation in format AMSBIB
\Bibitem{VolZai19}
\by S.~S.~Volosivets, N.~N.~Zaitsev
\paper Martingale inequalities in symmetric spaces with~semimultiplicative weight
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2019
\vol 19
\issue 2
\pages 126--133
\mathnet{http://mi.mathnet.ru/isu795}
\crossref{https://doi.org/10.18500/1816-9791-2019-19-2-126-133}
\elib{https://elibrary.ru/item.asp?id=38247436}
Linking options:
  • https://www.mathnet.ru/eng/isu795
  • https://www.mathnet.ru/eng/isu/v19/i2/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :77
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025