Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 3, Pages 290–296
DOI: https://doi.org/10.18500/1816-9791-2020-20-3-290-296
(Mi isu857)
 

Scientific Part
Mathematics

On customary spaces of Leibniz–Poisson algebras

S. M. Ratseeva, O. I. Cherevatenkob

a Ulyanovsk State University, 42 Leo Tostoy St., Ulyanovsk 432017, Russia
b Ilya Ulyanov State Pedagogical University, 4/5 Lenina Sq., Ulyanovsk 432071, Russia
References:
Abstract: Let $K$ be a base field of characteristic zero. It is well known that in this case all information about varieties of linear algebras $\bf{V}$ contains in its polylinear components $P_n(\bf{V})$, $n \in \mathbb{N}$, where $P_n(\bf{V})$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,\bf{V})$. D. Farkas defined customary polynomials and proved that every Poisson PI-algebra satisfies some customary identity. Poisson algebras are special case of Leibniz–Poisson algebras. In the paper the sequence of customary spaces of the free Leibniz–Poisson algebra $\{Q_{2n}\}_{n\geq 1}$ is investigated. The basis and dimension of spaces $Q_ {2n}$ are given. It is also proved that in case of a base field of characteristic zero any nontrivial identity of the free Leibniz–Poisson algebra has nontrivial identities in customary spaces.
Key words: Poisson algebra, Leibnitz–Poisson algebra, variety of algebras, growth of variety.
Received: 20.05.2019
Revised: 09.09.2019
Bibliographic databases:
Document Type: Article
UDC: 512.572
Language: Russian
Citation: S. M. Ratseev, O. I. Cherevatenko, “On customary spaces of Leibniz–Poisson algebras”, Izv. Saratov Univ. Math. Mech. Inform., 20:3 (2020), 290–296
Citation in format AMSBIB
\Bibitem{RatChe20}
\by S.~M.~Ratseev, O.~I.~Cherevatenko
\paper On customary spaces of Leibniz--Poisson algebras
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 3
\pages 290--296
\mathnet{http://mi.mathnet.ru/isu857}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-3-290-296}
Linking options:
  • https://www.mathnet.ru/eng/isu857
  • https://www.mathnet.ru/eng/isu/v20/i3/p290
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :32
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024