|
Scientific Part
Mathematics
On customary spaces of Leibniz–Poisson algebras
S. M. Ratseeva, O. I. Cherevatenkob a Ulyanovsk State University, 42 Leo
Tostoy St., Ulyanovsk 432017, Russia
b Ilya Ulyanov State Pedagogical University, 4/5 Lenina Sq., Ulyanovsk 432071, Russia
Abstract:
Let $K$ be a base field of characteristic zero. It is well known that in this case all information about varieties of linear algebras $\bf{V}$ contains in its polylinear components $P_n(\bf{V})$, $n \in \mathbb{N}$, where $P_n(\bf{V})$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,\bf{V})$.
D. Farkas defined customary polynomials and proved that every Poisson PI-algebra satisfies some customary identity.
Poisson algebras are special case of Leibniz–Poisson algebras.
In the paper the sequence of customary spaces of the free Leibniz–Poisson algebra $\{Q_{2n}\}_{n\geq 1}$ is investigated. The basis and dimension of spaces $Q_ {2n}$ are given.
It is also proved that in case of a base field of characteristic zero any nontrivial identity of the free Leibniz–Poisson algebra has nontrivial identities in customary spaces.
Key words:
Poisson algebra, Leibnitz–Poisson algebra, variety of algebras, growth of variety.
Received: 20.05.2019 Revised: 09.09.2019
Citation:
S. M. Ratseev, O. I. Cherevatenko, “On customary spaces of Leibniz–Poisson algebras”, Izv. Saratov Univ. Math. Mech. Inform., 20:3 (2020), 290–296
Linking options:
https://www.mathnet.ru/eng/isu857 https://www.mathnet.ru/eng/isu/v20/i3/p290
|
Statistics & downloads: |
Abstract page: | 119 | Full-text PDF : | 32 | References: | 15 |
|