Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatsionnye Tekhnologii i Vychslitel'nye Sistemy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2017, Issue 2, Pages 43–53 (Mi itvs264)  

DATA ANALYSIS

Application of Machine Learning to Incident Ranking at Moscow Railway

P. Y. Boykoa, E. M. Bikovb, E. I. Sokolovc, D. A. Yarotskya

a Skolkovo Institute of Science and Technology
b Institute for Information Transmission Problems (IITP)
c Technical Center for Automation and Remote control at OJSC "Russian Railways"
Abstract: Moscow Railway, a large railway network including 8800 kilometers of track and 549 stations, is equipped with tens of thousands of devices for automatic registration of system failures. Alerts produced by these devices are processed by operators of the Infrastructure Management Center. The alert flow is very intense and creates a significant stress on the operators while about 97
Keywords: railroad monitoring, incident ranking, machine learning, feature engineering, ensemble of decision trees, XGBoost.
Document Type: Article
Language: Russian
Citation: P. Y. Boyko, E. M. Bikov, E. I. Sokolov, D. A. Yarotsky, “Application of Machine Learning to Incident Ranking at Moscow Railway”, Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2017, no. 2, 43–53
Citation in format AMSBIB
\Bibitem{BoyBikSok17}
\by P.~Y.~Boyko, E.~M.~Bikov, E.~I.~Sokolov, D.~A.~Yarotsky
\paper Application of Machine Learning to Incident Ranking at Moscow Railway
\jour Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
\yr 2017
\issue 2
\pages 43--53
\mathnet{http://mi.mathnet.ru/itvs264}
Linking options:
  • https://www.mathnet.ru/eng/itvs264
  • https://www.mathnet.ru/eng/itvs/y2017/i2/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatsionnye  Tekhnologii i Vychslitel'nye Sistemy
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :260
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025