|
An oscillation inequality on a complex Hilbert space
S. Demir Agri Ibrahim Cecen University, Ağrı, 04100 Turkey
Abstract:
Let $T$ be a contraction on a complex Hilbert space $\mathcal{H}$, and for $f\in \mathcal{H}$ define $$A_n(T)f=\frac{1}{n}\sum_{j=1}^nT^jf.$$ Let $(n_k)$ be an increasing sequence and $M$ be any sequence. We prove that there exists a positive constant $C$ such that $$\left(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m< n_{k+1}\\ m\in M}}\|A_m(T)f-A_{n_k}(T)f\|_{\mathcal{H}}^2\right)^{1/2}\leq C\|f\|_{\mathcal{H}}$$ for all $f\in \mathcal{H}$.
Keywords:
Hilbert space, contraction, oscillation inequality.
Received: 10.11.2023 Revised: 10.11.2023 Accepted: 26.12.2023
Citation:
S. Demir, “An oscillation inequality on a complex Hilbert space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9, 16–21
Linking options:
https://www.mathnet.ru/eng/ivm10011 https://www.mathnet.ru/eng/ivm/y2024/i9/p16
|
Statistics & downloads: |
Abstract page: | 57 | Full-text PDF : | 1 | References: | 14 | First page: | 8 |
|