Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 26–37 (Mi ivm1275)  

This article is cited in 2 scientific papers (total in 2 papers)

On the strengthened $L^1$-greedy property of the Walsh system

M. G. Grigorian

Chair of Higher Mathematics, Physical Faculty, Erevan State University, Erevan, Republic of Armeniya
Full-text PDF (204 kB) Citations (2)
References:
Abstract: For any $0<\varepsilon<1$ a measurable set $E\subset[0,1]$ exists with a measure $|E|>1-\varepsilon$ such that for each function $f(x)\in L^1(0,1)$ one can find a function $g(x)\in L^1(0,1)$, which coincides with $f(x)$ on $E$, such that its Fourier–Walsh series converges to it in the $L^1(0,1)$-metrics, and all nonzero terms of the sequence of the Fourier coefficients of the new function obtained by the Walsh system have the modulo decreasing order, and, consequently, the greedy algorithm for this function converges to it in the $L^1(0,1)$-norm.
Keywords: Fourier series, Walsh system, the greedy algorithm, convergence in the $L^1(0,1)$-norm.
Received: 01.06.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 5, Pages 20–31
DOI: https://doi.org/10.3103/S1066369X08050034
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: M. G. Grigorian, “On the strengthened $L^1$-greedy property of the Walsh system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 26–37; Russian Math. (Iz. VUZ), 52:5 (2008), 20–31
Citation in format AMSBIB
\Bibitem{Gri08}
\by M.~G.~Grigorian
\paper On the strengthened $L^1$-greedy property of the Walsh system
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 5
\pages 26--37
\mathnet{http://mi.mathnet.ru/ivm1275}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445181}
\zmath{https://zbmath.org/?q=an:1160.42313}
\elib{https://elibrary.ru/item.asp?id=11034931}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 20--31
\crossref{https://doi.org/10.3103/S1066369X08050034}
Linking options:
  • https://www.mathnet.ru/eng/ivm1275
  • https://www.mathnet.ru/eng/ivm/y2008/i5/p26
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :81
    References:89
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024